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The umbrella shape of star polymers in 
the theta state* 

Fabio Ganazzol i t ,  M b n i c a  A. Fontelos and Giuseppe Allegra 
Dipartimento di Chimica, Politecnico di Milano, Piazza L. da Vinci 32, 1-20133 Milano, 
Italy 
(Received 27 November 1989; revised 13 March 1990; accepted 26 March 1990) 

The chain conformation in the theta state is calculated by self-consistent free-energy minimization assuming 
that the overall long-range two- and three-body interactions mutually compensate. However, the repulsive 
screened interactions arising from the intrinsic chain thickness do survive, imparting an asymptotically 
finite expansion to the chain. Because of the medium-range character of these interactions, the 
proportionality between the unperturbed mean-square radius of gyration ($2)0 and the molecular weight 
is asymptotically maintained. Compared with the phantom chain, devoid of both intrinsic thickness (i.e. 
screened interactions) and long-range interactions, the arms experience an increasing expansion upon 
increasing the number of arms, f.  At the same time, the fluctuations of the branch point around the centre 
of mass do increase as well, since the average angle between the arms decreases, and the macromolecule 
tends towards an umbrella-like shape. As a consequence, the macromolecular density becomes more uniform 
than for the phantom chain. This is reflected in the calculated structure factor S(Q) by a sharpening of the 
peak in the plot of Q2S(Q) versus Q (where Q = 4n sin(0/2)/2), in good agreement with the experimental 
results by Huber et al. Through cancellation of contrasting effects, the topological index 
g ~- ( $ 2 ) 0 / ( $ 2 ) 0 , 1 i  . . . .  is close to the value of the phantom chain for any f ,  whereas h = RHo/RHo,I i . . . . .  R r t  

being the hydrodynamic radius, and p = (S2)~/2/Rno are somewhat larger. The negligible influence of the 
residual three-body interactions in the theta state compared to the screened interactions is finally commented 
upon considering also recent Monte Carlo simulations. 

(Keywords: theta state; star polymers; self-consistent approach; free-energy minimization; chain thickness) 

I N T R O D U C T I O N  

Star polymers are nowadays of great interest both 
because of their practical importance and as a check of 
current theories on polymer equilibrium and dynamics. 
Relatively monodisperse and well characterized samples 
have been synthesized in recent years 1-3, so that some 
experimental data are now available ~'2'*-9. 

In the unperturbed ® state the long-range two- and 
three-body interactions among chain atoms may be 
considered as absent, on average, because of mutual 
cancellation 1°. Using this criterion, we recently calcu- 
lated ~1 the ® temperature of linear and regular star 
polymers as a function of the number of arms and of 
molecular weight. It turns out that ® is smaller than 
expected for a polymer devoid of any long-range 
interaction because slightly attractive two-body attrac- 
tions must counterbalance the repulsive three-body 
interactions, the more so the larger the number of arms 
or the smaller the molecular weight. Here we will address 
the question of the polymer conformation in the ® state, 
assuming that only short-range and medium-range 
interactions are present ~°. 

The macromolecule will be described by an equivalent 
bead-and-spring model with Gaussian distributions of 
the interbead distances and will comprise N + 1 beads 
and f arms of equal length, thus having N / f  beads per 
arm, if one bead is at the branch point; in the following 
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we shall be mainly concerned with the limit N f f ~  o0. In 
this description, short-range correlations among skeletal 
rotations are effectively neglected, being embodied in the 
segment of mean-square length 12 connecting two 
adjacent beads. It should be stressed here that the use of 
a Gaussian distribution does not imply a random-walk 
chain model, in that the mean-square distance between 
two beads need not be proportional to their topological 
separation, in general. The equilibrium conformation is 
obtained by self-consistent minimization of the chain free 
energy 1°, which is written as a sum of an elastic term 
and of a screened-interactions term 12. The former has 
an entropic origin and arises from the loss of degrees of 
freedom caused by any deviation from the random-walk 
conformation, whereas the latter can be described as a 
repulsive term due to the finite thickness of the chain. In 
fact, although the effective potential e(r) between two 
beads at a distance r, including both two- and three-body 
interactions, is usually represented by a delta function, 
it actually consists of the sum of a positive (hence 
repulsive) term due to the co-volume at short separation 
and of a negative (i.e. attractive) term influenced by the 
solvent at larger separations l°'x2. (An analogous model 
was also independently proposed by Martin13.) The 
volume integral of e(r) vanishes in the ® state, meaning 
that the long-range repulsions are effectively compen- 
sated by the solvent-induced attractions. However, the 
mismatch between the regions of space where e(r) is 
repulsive and where it is attractive gives an overall 
free-energy repulsive term, not fully compensated by 
the screening effect of the solvent, proportional to 
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(r2(i, j)>-5/2, where (r2(i, j)> is the mean-square dis- 
tance between beads i and j12. This repulsion is not of 
a long-range character, because it falls off fast enough 
with increasing l i - j l  that the proportionality between 
the mean-square radius of gyration and molecular weight 
is preserved. It may be regarded as a medium-range 
interaction ~° in that it has a much longer range than the 
correlation among the skeletal rotations, but not long 
enough to influence the above-mentioned proportionality. 

In this paper we apply these concepts to star polymers, 
where these effects are enhanced by the density of 
segments at the branch point and where we may expect 
a delicate interplay between the repulsions within one 
arm and among the arms. The main emphasis will be on 
the calculation of the intramolecular mean-square dis- 
tances, of the mean-square radius of gyration and, more 
briefly, of the hydrodynamic radius. The latter quantities 
are experimentally accessible, but they only reflect the 
overall behaviour of the polymer. A quantity more 
sensitive to the distribution of the intramolecular dis- 
tances is the structure factor, measured through elastic 
neutron scattering to probe the local conformations; a 
section is therefore devoted to its calculation. 

THE MATHEMATICAL APPROACH 

The basic equations 
As sketched in the 'Introduction', the free-energy terms 

due to long-range two- and three-body interactions 
cancel each other in the O state 1°-12, apart from an 
irrelevant constant, so that the excess free energy over 
the random-walk phantom chain is, in kBT units: 

= (A - Aph)/kBT = ~ ,  + ~2,  (1) 

where A and Aph are the actual and the phantom-chain 
free energy. In this context, we denote as phantom chain 
an infinitely thin chain where the skeletal atoms are 
completely insensitive to one another except for local 
correlation among skeletal rotations (these involve at 
most 5-10 bonds and are effectively included in the 
average segment length between adjoining beads). The 
reference phantom chain, indicated by a 'ph' subscript, 
is therefore devoid of any long-range or medium-range 
interaction. In the following, we will also use a zero 
subscript for the average quantities of the unperturbed 
polymer and no subscript at all for relationships of more 
general validity. In equation (1), ~¢el is the elastic 
contribution and .~Es is the (repulsive) medium-range 
contribution due to the two-body screened inter- 
actions 1°'1z originating from the intrinsic chain thick- 
ness. Within the Gaussian approximation, we have12: 

'~2s = (Ko/2) ~ ~ (rE(i,  j ) > - 5 / 2  l i -  Jl t> k- (2) 

where 

K o = ~ (3/2rOa/Ev~(AEr> (2a) 

is the parameter of the screened interactions. Here, (AEr> 
is the mean-square chain thickness, ve is the co-volume 
per chain bead and k- is a lower cut-off originating from 
stereochemical constraints that prohibits any two atoms 
separated by k < k-bonds to come into contact, k-turns 
out to be somewhat larger than the statistical segment 
length; accordingly, in the present context, it will have 
the value of a few segment units. 

The elastic free energy is best expressed as a sum over 
the chain normal modes 1 o. 14 to account for all the degrees 
of freedom. The normal modes of a phantom-chain star 
polymer were first obtained by Zimm and Kilb 15 and 
may be expressed as a trigonometric Fourier transform 
of the bond vectors. Owing to the star symmetry, these 
modes are formally equal, though with a different 
multiplicity, to those of the linear chain formed by two 
arms only of the star, therefore having m = 2 N / f  + 1 
beads. Let us label sequentially the beads of this linear 
chain from 1 to 2 N / f  + 1, so that the branch point is 
labelled as N / f  + 1 and the free ends as 1 and 2 N f f  + 1; 
the normal modes are1°: 

2N/f 

7(q) = 21/2 ~ l(i) sin[q(/-- 1)] (3) 
i=1 

where l(i) is the ith bond vector connecting beads i and 
i + 1 (i -- 1, 2 . . . . .  2N / f )  and q is the Fourier coordinate: 

q = (rr/m)nq nq = 1, 2 . . . . .  m - 1 (m = 2 S / f  + 1) 
(4) 

The corresponding inverse transform is: 

l(i) = (21/2/N) ~"](q) s in [q ( / -  1)] (5) 
{q} 

In other words, we need only consider two arms, the 
others being taken care of by symmetry through the 
multiplicity of the modesZS: the even modes, i.e. those 
with nq even, have a unit multiplicity, whereas the odd 
modes (with n~ odd) have a multiplicity f -  1. With the 
above labelling scheme the symmetry properties of the 
transform are somewhat hidden, but many expressions 
are more concise and computationally simpler. We shall 
assume as a first approximation that the normal modes 
7(q) remain orthogonal (i.e. ('/(q).7(q')> = 0 ifq ~ q') even 
in the presence of the O expansion due to the screened 
interactions. Accordingly, the mean-square distance 
between beads i and j can be written as a single sum over 
the normal modes: 

(rE(i, j)> = 212~ ~2(q) 
m (~} 

sinE[q(/- j ) /2]  sinE[q(i + j -  1)/2] 
x (6) 

sin E (q/2) 

where ~2(q) is the expansion factor of the mean-square 
amplitude of the q mode: 

~2(q) = (~(q)12)/(172(q)12>ph (6a) 

It may be shown that in the above sum the even modes 
give a larger contribution when i and j belong to the 
same arm and the odd modes when i and j  are on different 
arIns .  

Note that for t~2(q)= 1 we recover the random-walk 
phantom-chain result: 

(rE( i, J))ph = 121 i -- Jl (7) 

In other words, in the phantom chain the mean-square 
distance between any two beads depends only on their 
topological separation, and not on their location within 
the chain, whereas this is not so in general. 

The elastic free energy ~¢el can now be expressed as: 

3 
'-~fez = ~ ~ ~oE~2(q) --  1 --  In ~2(q)] (8) 

{q} 
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where 

{If for even modes (8a) 
40 = - 1 for odd modes 

The unperturbed chain conformation is obtained by 
minimization of the excess free energy d with respect 
to all the degrees of freedom. Using equations (8) and 
(2) together with equation (6), from the condition 
d d ~ f / 0 ~ 2 ( q )  = 0 we get: 

1 5 K  1 
- -  -- • 2 . . . .  ~, ~ sin2[q(i -- j)/2] 
~2(q) 1 3 40m sin tq/z)  i c j  

x sin2[q(i + j  - 1)/2]/J(i ,  j)7/2 (9) 

(1i- Jl/> k-, m- -2N/ f  + 1) where K is the dimensionless 
parameter of the screened interactions: 

K = Kol l  5 (9a) 

and we define: 
J(i,  j)  = <r2(i, j )>o/l  2 (9b) 

(Note that in equation (9) the linear chain is given by 
f = 2 only, while f = 1 must be excluded.) 

Equations (6) and (9) form a set of coupled equations, 
which must be solved self-consistently. From inspection 
of equation (9), it may be seen that for f > 2 the expansion 
factor of the even modes is larger than that of the odd 
modes, the ratio [1 - ll~t2(q)J=v=nl[1 - ll&2(q)]oad tend- 
ing approximately to ( f -  1) for q << 1. 

Note that, owing to the star symmetry, the double sum 
in equation (9) can be split into two smaller double sums 
as follows: 

Nif ( N/f + l 2(N/f + l)- i  ) 
E E - - * f  ~1 2 ~ + ( f - l )  ~ w u (10) 
i#j  i = j = i + l  j=NIf+2 

f l  i f / + j  = 2 ( S / f  + 1) 
w 

u=  t2  otherwise 

with greater computational efficiency. 
From a self-consistent set {&2(q)} and (<rE(i, J)>o}, we 

may calculate other  quantities of interest, like the 
mean-square radius of gyration <S 2 >o, the hydrodynamic 
radius Rlto and the structure factor S(Q) (Q is the modulus 
of the scattering vector: Q = 41z sin(0/2)/2, 7, being the 
wavelength employed and 0 the scattering angle): 

1 
<$2> - 2 ( N  + 1) ~ ~ , ~  <r2(i' j)> 

_ f12 X7 ~2(q) 
[A(q) + ff 1)B(q)] 

m(N + 1) 2 ~ 4 sin2(q/2) 
(ll) 

where 

( -  l r '  (_N 1 - ( -  1)", cos q 
A(q) = 7 + 1 + 1 -- 4 sinZ(q/2) 

f N ~  2 (--1)",N 1 - - ( - 1 )  nq cos q 
n(q)=tf ) 2 f (--  1)n~ 4sin2(q/2) 

R H = ( N +  1) 2 < r - l ( i , j ) >  
\ #1 )-' 

= ( N  + 1)20z/6) 1/2 <r2 ( i ,  j ) > -  1/2 
\ ' # j  

( l l a )  

(12) 

S(Q) = (N + 1) -2 ~ ~ (exp[- iQ.r (h ,  j ) ] )  
h,j 

= (N + 1) -2 ~ ~ exp - ~ -  <r2(h, j)> (13) 
h,j \ u 

within the Gaussian approximation. 
<S 2> is defined as the mean-square distance of the 

polymer beads from the centre of mass, but, as pointed 
out long ago by Zimm and Stockmayer x6, it is usefully 
expressed as the difference between the mean-square 
distances of the beads from a reference bead, <XZ>, and 
the mean-square distance of the latter from the centre of 
mass, <Z2). In a star polymer the most natural reference 
bead is the branch point, so that: 

<S 2 ) = <X 2 ) -- <Z 2 ) (14) 

1 N + I  
- ~,, ( r 2 ( i , N / f + l ) >  <X2) N + I  i= l  

_ f N/~ <r2( i , N / f +  1)> (14a) 
N + 1 i = 1  

1 
< Z2 ) = E ~, [<r2( i, N / f  + 1)> 

2(N+ 1) 2 i,j 

+ <r2(j, X l f  + 1)> - <r2(i, j)>] (14b) 

<X2> may also be given as a sum over the normal modes: 

<x~> (15) 
N + 1 tq} 4 s i n~ / 2 )  \ 

whereas the corresponding expression for <Z 2> is rather 
cumbersome; therefore, this quantity is most easily 
evaluated from <S 2) and <X 2> through equation (14). 

A first-order perturbative approach: analytical results 

The ® expansion of a star polymer may be evaluated 
analytically from equations (6) and (9) assuming the 
screened interactions to be a small perturbation over the 
phantom chain, thus implying that the effective parameter 
K f  will be small compared to unity. We will consider a 
star polymer with very long arms, that is with N / f  >> 1, 
so that the collective modes of interest have q << 1. Let 
us start with the phantom chain, for which ~2(q)= I, 
therefore <r2( i, J ) > p h  = 121 i -  Jl (see equation (7)). 
Replacing now this expression in equation (9) and taking 
into account equation (10), we can get the leading term 
of ~2(q) (see the Appendix, equation (A.2))12: 

1 1 5 f ~_ - -  + - K - Gq 1/2 (16) 
~2(q) 8t2(0) 3 40 

where (see equation (A.3)) 

1 _ 1 5 K f o [ ( N ~  -1/2]  
~ 0 )  ~2~q)l,-,o =1 ~(~i-/2~ + L \ f }  J (16a) 

(Here, it is understood that q tends to zero separately 
for even or odd modes.) We point out that these terms 
arise from the interaction between relatively close beads 
having [ i -  J l -  ~ (see equation (A.3)), in keeping with 
the medium-range character of the potential. In equation 
(16) the constant G is defined through: 

~o X~X 2 - -  sin 2 x 
G = 2-3/2 x ~  dx = 0.6684 (17) 

The upper limit of this integral was set to infinity for 

172 POLYMER, 1991, Volume 32, Number 1 



Umbrella shape of star polymers in 0 state: F. Ganazzofi et al. 

simplicity (see equation (A.4) and the following discus- 
sion): this implies that equation (16) is slightly approxi- 
mate for the first two or three even and odd modes, which 
may entail some inaccuracy in the derived quantities for 
small arm lengths. On the other hand, the q-dependent 
term in equation (16) becomes negligible anyway when 
considering the collective modes of very long chains, so 
that we may put, from equations (16) (K/(k-) 1/2 << 1): 

+ ~ ( ~  f = ~e~=. (even modes) 

~2(q)lq-"O = 5 K 
f 

~o2dd 
3 (k-) 1/2 f - -  

1 (odd modes) 

(18) 

neglecting terms of the order of (N/f)-  1/2 (see equations 
(A.3)). 

This expression can be inserted in equation (6) to 
obtain the mean-square distances upon performing 
separately the sums with nq even or odd (setting the upper 
limits to infinity since the largest contribution is due to 
the collective modes with q << 1). For symmetry reasons, 
we need only calculate the distances between one bead 
in a given arm, that is, with 1 ~<i< N/ f  + 1, and the 
second bead either within the same arm (that is, with 
i< j<<.N/ f+l )  or in another arm with N/f+l<<.j  
<~2(N/f + 1) -- i: 

(r2( i, J)o)o = 12(j -- 00"1 1 <<. i < j <~ N/ f  + 1 (19a) 

(r2(i,j))o = 12(j -- i)0" 1 -- 212[j -- (N/f  + 1)]0" 2 

N/ f  +l<, . j<.2(N/ f  + l ) - i  (19b) 

where 

5 K f 2  ~2 0"1 = (o~ . . . .  + aZdd)/2 ~- 1 + 
6 (k-) 1/2 f -- 1 

(19c) 
2 2 . . 5  K f ( f - - 2 )  

0"2 = (~ . . . .  - -  ~°dd)/2 - -  6 (k-) 1/2 f -- 1 

The phantom chain is recovered by setting K/(k-) U2 = 0, 
thus putting 0"1 - 1 and 0"2 ~ 0. Also, for the linear chain 
( f  2 ) - 2  -2 = a . . . .  = and d, SO that 0"2 -~ 0 and the two regimes 
of (r2(i, J))o reduce to one (this would also be true for 
a perturbed chain). 

In the same way, we may also get the corresponding 
first-order expressions for ($2)o, (X2)o  and (Z2)o  using 
equations (18) or (19) with equations (11), (14) and (15): 

1 2 N { 0 "  - 2  
( S 2 ) 0 - 6  ~ \ , ~ - -  20-2 f - ~ )  

1 2 N ( 3 f f - 2  5 K f 2 f g ( f l - - l ! )  
- - - -  + - -  - - - -  ( 2 0 )  

6 f 6 (k-) 1/2 

12 N 

~ F N  1 +  
2 f 6 (~')1/2 f _ 1 

(21) 

(Z:>o = 5 - f  + 0"2 

12N(~ 5 K  f2  - ; z ( f i -  1) ) 

3 f 6 (k-) 1/2 
(22) 

From the above, we have ( $ 2 ) o  o c N ,  thus confirming 
that we are indeed in the O state. 

The perturbative expression for the hydrodynamic 
radius Ran may be obtained from equations (12) and (19) 
treating the bead indices as continuous variables, thereby 
transforming the sums into integrals. The result is: 

R~o ~ =~\~,I \ f  J 

1 (  21/2(31-32)1/2--a~/2) 
X- -  a~-1/2 + ( f - -  1) - - - - - -  

f 0" 1 - -  20" 2 
(23) 

31 and 0" 2 being given in equation (19c). 

The ful l self-consistent solution: numerical results 
The set of coupled equations (6) and (9) was also solved 

numerically through an iterative procedure, as pre- 
viously done by us 12'14, taking into account equation 
(10). Starting again from fi2(q)= 1, therefore from 
(r2( i, J))ph = 12[ i -  J[ (see equation (7)), equations (9) 
and (10) yield an improved set {~2(q)}, which upon 
insertion in equation (6) gives a new set of (r2(i, J))o. 
The latter is recycled into equation (9) and so on until 
self-consistency is reached; of course, we checked that in 
so doing the excess free energy ~¢ was indeed minimized. 
A fixed value of the screened-interactions parameter 
K/(k-') 1/2= 0.09 was used throughout, corresponding to 
that estimated by one of us 32 for atactic polystyrene; we 
also set the cut-off value k-to 1 for simplicity. Since only 
two arms need be considered in the calculations, while 
the others are accounted for through multiplicity factors, 
we carried out the calculations for fixed arm lengths N/ f  
increasing f stepwise from the initial value of 2 (linear 
chain) and using the self-consistent values of ~2(q) 
obtained for a given f as the starting point for a larger 
f to speed up convergence. Owing to computer time 
limitations, the largest N/ f  considered was 500. 

The numerical results confirmed the first-order analyt- 
ical results: a plot of ~2(q) versus ql/2 (cf. equation (16)) 
is indeed linear at small q with a negative slope for both 
even and odd modes, so that we may write: 

~2(q) = a -- bq 1/2 (q << 1) (24) 

a being either ~2ve n or =oda'2 (see equation (18)) and b (>0)  
either b . . . .  or bnd d. The ~2(q) values of the even modes 
are larger than those of the odd modes for any f (>2)  
and each set falls on a single curve independent of N/f  
with only minor deviations for the very first few modes. 
From the numerical results, -2 and -2 Cteven ~odd are therefore 
obtained as a function of f by extrapolation to q ~ 0. 
These values and the slopes b agree with the perturbative 
results (equations (16) and (18)) when plotted as a 
function o f f ,  as shown in Figure 1. The numerical results 
deviate slightly from the perturbative ones at large f 
since the latter are valid to first order in Kf/([¢) U2, while 
second-order terms become relevant for highly branched 
chains if K/(k-) 1/2 = 0.09. 

At convergence, the mean-square distances (r2(i, J))o 
follow the peculiar two-regime behaviour depending on 
whether i and j belong to the same or to different arms; 
typical plots of (r2(i, J))o as a function of j - i (for fixed 
i, j > i) are shown in Figure 2 for f = 6 and f = 12 in 
suitably normalized variables together with the perturba- 
tive results of equations (19). (The normalized variables 
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Figure 1 The intercepts ~,=,, =~ad (a) and the slopes, with change of 
sign, b~,=,, bodd (b) of ~2(q) versus qt/2 (see equation (24)) plotted as a 
function of f. Full curves: numerical results (N/f--*oo) with 
K/(i)~/2=0.09, k = l  (used throughout). Broken curves: the 
perturbative results with the same value of K/(k-) ~/2 as above (from 
equations (16) and (18)). (Although only integer values of f should be 
permitted, here and in the following we use an interpolating line for 
clarity) 

15 
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0 025 0.50 035 
j-i/Z(N/f+ 1-i) 

Figure 2 The mean-square distance (re(i, J))o (in l 2 units) between 
beads i andj as a function of their topological separation j - i for fixed 
i (j > i), in normalized variables. Full lines: numerical results from full 
self-consistent approach. Broken lines: perturbative results from 
equations (19). Dotted line: the phantom-chain result. The variable on 
the abscissa was chosen so that the plot is valid for any i; it is 0 when 
j coincides with i, 0.5 when j is at the branch point (labelled N/f + 1) 
and 1 when j is in the position symmetrically opposite to i with respect 
to the branch point (i is always chosen in the first arm, so that 
l<~i<N/f +l) 

were chosen so that the plot is valid for any given value 
of i.) As a general trend, the slope increases with f when 
the beads belong to the same arm (value on the abscissa 
smaller than 0.5), whereas it decreases with f when the 
beads belong to different arms (value on the abscissa 
larger than 0.5). 

A C O M P A R I S O N  BETWEEN T H E  O-STATE 
E X P A N S I O N  OF LINEAR A N D  B R A N C H E D  
POLYMERS 

As a result of the repulsive medium-range screened 
interactions due to the intrinsic chain thickness, a real 
polymer is somewhat expanded with respect to the 
random-walk phantom-chain model, although the pro- 
portionality between the mean-square radius of gyration 
($2)o and the molecular weight is asymptotically 
preserved (see equation (20)). Furthermore,  with increas- 
ing number  of arms f ,  a greater density of segments is 
present near the star core, hence a larger number of 
repulsive interactions between beads at short topological 
separation. These interactions force the arms to stretch 
outwards, thereby increasing the polymer size with 
respect to the phantom chain, the more so the larger is 
f ,  as shown by -2 ~even (e.g. Figure I). On the other hand, 
the very topology of a star polymer makes it a more 
compact object than a linear chain with the same total 
molecular weight. The degree of compactness is usually 
given in terms of topological indices, defined as: 

g = ( $ 2 ) 0 / ( $ 2 ) 0 , 1 i  . . . .  (25a) 

h = R H o / R H o , I  i . . . .  (25b) 

For  the phantom-chain polymer we have 16'17" 

gpla = (3f -- 2)/f  2 (26a) 

hph = f l /2/[1 + ( f -  1)(21/2 -- 1)] (26b) 

Actually, these expressions hold only in the limit N / f  >> 1; 
this limit is reached quite soon by gph, unlike RIj, which 
depends on reciprocal averages, so that hph may be quite 
different from the limiting value even for relatively large 
molecular weights. 

In Figure 3 we show our asymptotic results for g and 
h; they show a close similarity with the phantom-chain 
values, particularly concerning g. However, at small 
f our curve is the lower one, thus suggesting an even 
greater compactness of the polymer than predicted for 
the phantom chain. This is at variance with h, which is 
always somewhat larger than hph, and, most important,  
in apparent contradiction with the qualitative expecta- 
tion discussed above. The contradiction is even more 
apparent  if we consider that g may be expressed as: 

2 2 g = gph(O:S/O~S,li . . . .  ) (27) 

where 

o~ = ( S2)o/ ( S2)ph (28) 

is the expansion factor of the mean-square radius of 
gyration. A plot of the asymptotic values of =s 2 versus f 
for large molecular weight is reported in Figure 4 and 
shows a minimum for f = 3-4;  note that the analogous 
plot of ~rt = Rno/Rx,ph reported in the same figure does 
not show any such minimum. 

The anomaly in this behaviour can be explained by 
expressing ($2)o through the difference between the 
mean-square distance of the beads from the branch point, 
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Figure 4 The expansion factors ct] = (S2)o/(S2)ph and ct n = R r l o /  
Rn.vh as a function of f. Full curves: numerical results. Broken curves: 
perturbative results 

( X 2 ) o ,  and the mean-square distance of the latter from 
the centre of mass, (Z2)o  (see equations (14)). Let us 
first consider the phantom-chain polymer (see equations 
(21) and (22) with K/(k-)l/2=O). Upon joining an 
increasing number of arms of given length N / f  to a 
common point, (X2)ph is independent of f ,  whereas 

(Z2)ph decreases proportionally to 1If. In other words, 
the arms do not interact and can intersect freely, so that 
(X2)vh is a constant for a fixed arm length. However, 
the increase in f displaces the centre of mass towards 
the branch point and therefore decreases (Z2)ph SO that 
in the limit f--* ~ the centre of mass and the branch 
point coincide (i.e. ( Z 2 ) p h  ~ 0 ) .  Correspondingly, ( S 2 ) p h  

increases with f at fixed N / f  to a finite value, with 
( S 2 ) p h  "~ (X2)ph for f ~ 00. 

Conversely, in the presence of the screened interactions 
(X2)o increases monotonically with f for a fixed arm 
length N / f  due to the larger number of repulsions 
between topologically neighbouring beads close to the 
star core: the ratio ~2 = (X2)o/ (XE)ph is reported in 
Figure 5 together with the perturbative result from 
equation (21). (Z2)o  follows a more complex pattern 
since it depends on two contrasting effects (see also 
equation (22)): for fixed N/f ,  the centre of mass would 
approach the branch point upon increasing f ,  as in the 
phantom-chain model; but at the same time the two 
points are taken farther apart by the increased interbead 
repulsions. For  lightly branched chains (small f ) ,  the first 
contribution is more important and (Z2)o  decreases 
somewhat with f ,  whereas the opposite is true at larger 
f .  However, (Z2)o  is always larger than (Z2)ph and 
o~ 2 = ( ZE>o/ < Z2>p h increases monotonically with f much 
more quickly than ,t 2, becoming very large at large f as 
shown in Figure 5. The increase of (Z2)o  over the 
phantom-chain value (see equation (14b)) is essentially 
due to the faster increase of (r2(i, J))o with l i - J l  for 
beads belonging to the same arm compared to beads 
belonging to different arms, the more so the larger is f 
(see Figure 2). This finding suggests an interesting 
consideration concerning the space correlation between 
the average directions of the arms. Let us consider (see 
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Figure 5 The expansion factors of the mean-square distance of the 
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Figure 6 (a) Definition of the angle 0 between vectors r(A, C) and 
r(B, C) placed on different arms. (b) A large value of (Z2)o means a 
large displacement Z,of the centre of mass ® from the branch point 
C, which in turn is related to inter-arm angles 0 averaging less than 
90 ° (see text). With this closing up of the arms, the star polymer tends 
to assume an umbrella-like shape 

Figure 6) two beads, A and B, placed on different arms 
at the same topological distance from the branch point 
C (using the numbering scheme adopted before, A 
corresponds to bead i, B to bead 2(N/f + 1) - i and C 
to bead N/ f  + 1). The angle 0 between r(A, C) and r(B, C) 
is given by: 

r2(A, B) = r2(A, C) + r2(B, C) - 2]r(A, C)[ [r(B, C)[ cos 0 
(29) 

Let us assume to a first approximation that Ir(A, C)I, 
Ir(B, C)I and 0 are statistically uncorrelated, and take the 
average of equation (29). Since (Jrl) = (8(r2)/3~) x/2 if r 
is a Gaussian-distributed vector, and (r2(A, C))o = 
(r2(B, C))  o, we have (see also equations (19)): 

2(rZ(A, C))o - (rE(A, B))o 
(cos 0)o = 

218/(31r)](r2(A, C))o 

3n 0" 2 
- ( 3 0 )  

8 tr 1 

Using Figure 2, we see that (cos 0)o is independent of 
the topological distance AC = BC, being always positive 

and increasing with f ,  for f > 2. As examples, (cos 0)o = 
0.28 and 0.52 for f = 6 and 12, corresponding to angles 
of ,-~ 75 ° and ~60  °, respectively. (The same values are 
obtained from equation (30) using for a 1 and a 2 the 
perturbative results in equation (19)). Otherwise said, the 
average angle between arms is always smaller than 90 ° , 
whereas it is equal to 90 ° for any f in the phantom chain. 
Figure 6b shows how the decrease of this average angle 
is coupled with an increase of (Z2)0:  a relatively large 
value of (Z2)o  enables the macromolecule to expand 
over the phantom chain much less than the individual 
arms do. As a result of the squeezing of the average angle 

, the star polymer tends to assume an umbrella-like 
shape (see Figure 6). -. 

Proceeding to consider ($2)0 = ( X 2 ) o -  (Z2)o,  its 
dependence on f is determined by the rate of change 
with f of (X2)o  and (Z2)o,  so that the radius of gyration 
of a branched polymer may be less expanded than that 
of a linear chain, thus giving a minimum in the plot Of 
~ versus f as in Figure 4. Therefore, the ratio 2 2 (ZS / O~S,linear 
is lower than unity at small f (=  3-4), so that g is smaller 
than 9ph (see equation (27)) for lightly branched chains, 
whereas the opposite is true at larger f .  

For  the sake of completeness, we also report in Figure 
3 the dimensionless ratio p = (S2)~/2/RHo as a function 
of f .  This quantity has the advantage that it can be 
measured on a single sample, thus avoiding the need for 
a linear polymer as a reference term. Owing again to the 
contrasting factors discussed above in determining (S  2)o, 
the effect of the screened interactions is larger on RHO, 
so that p is always smaller than Pvh" 

The comparison of the present results with experi- 
mental data is rather difficult since most of the earlier 
investigations from regular stars (see, for example, refs. 
1 and 2) were mainly concerned with intrinsic viscosity, 
which lies outside the scope of the present paper. 
Moreover, both the g and the h ratios were reported to 
be molecular-weight-dependent s'6, so that it is not always 
easy to ascertain the true asymptotic values. In general, 
the results from relatively lightly branched stars (with f 
up to 6-8) are quite in agreement with our prediction as 
well as with those of the phantom chain. The experi- 
mental g values, averaged over different, high-molecular- 
weight polystyrene l'a and polyisoprene 2 stars, are equal 
to the theoretical values within experimental error. It is 
remarkable, however, that for 8 >~ f > 3 all the experi- 
mental points are systematically larger than gph by about 
2 -4%,  whereas Monte Carlo simulations of star poly- 
mers on a lattice 18'19 predict still larger values. On the 
other hand, for f = 3 a few data from high-molecular- 
weight polystyrene stars 5 suggest g values lower than gph, 
although with some scatter, in keeping with our results 
and unlike Monte Carlo simulations laJg. The experi- 
mental results from more heavily branched polystyrene 
chains 4'5, having typically f = 12 or 18, show a larger 
discrepancy from theory, the g ratio being larger than 
both 9ph and our result, although close to the Monte 
Carlo value 19 for f = 12. We believe that a reason for 
this discrepancy lies in the strong correlation induced by 
the constraint of a common branch point for many arms 
(even though its detailed chemical structure 6'7 somehow 
avoids an excessive crowding at the star core). On the 
other hand, some ambiguity may be present in these few 
data, since rather large differences exist between other- 
wise very careful light scattering 5 and neutron scattering 6 
determinations of (S2)o, hence of g, carried out on 
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the same samples. Furthermore, the molecular-weight 
dependence 5'6 of the g ratio makes it difficult to 
extrapolate to the asymptotic value (see e.g. figure 7 of 
ref. 6) for a meaningful comparison with the present 
theoretical values. 

Concerning the h ratio (see equation (25b)), the 
available data 4'5 are even scarcer, although being more 
accurate5: they also show some scatter and some residual 
molecular-weight dependence, but appear to be larger 
than hph. This trend is in keeping with our results, which 
however become quantitatively inadequate at large f 
because of the preaveraged hydrodynamic approxima- 
tion in the Zimm limit 2° implied by equation (12). 
This is probably a gross oversimplification for heavily 
branched chains, due to the large density of segments 
near the star core, which excludes most of the solvent 
from the inner parts of the polymer. Furthermore, any 
hydrodynamic screening effect of the arms 2 ~ is completely 
neglected; under these conditions, equation (12) is only 
a first approximation, so that our results may only give 
a qualitative trend. 

A 
O 

~k 

t H E  STRUCTURE FACTOR 

The structure factor S(Q) was calculated numerically 
from equation (13) using the values of (r2(i, J)>o at 
convergence. The first-order perturbative expression is 
obtained upon inserting in the same equation the results 
given in equations (19) and carrying out the integrals 
over i and j: 

S(Q)=fr2~(e-UOdfTu-001-1 ) 
u2 L00~ \ f 

+2  f - 1  ( l ( l _ e _ , , , / y )  4 

O°1 - -  A00 2 \ 0 "  1 

1 
(1 (31) 

3 
where tr 1 and 002 are given in equation (19c) and: 

u = Q212N/6 (31a) 

In the limit g/(k-) 1/2 = 0,  that is, Ol - 1 and 0" 2 ~ -  0 (see 
equation (19c)), we recover the well known Benoit 
equation 22 for the phantom-chain star polymer.The 2 
structure factor is molecular-weight-independent when 
plotted a s / , / 2 S ( Q )  versus/~2, where/~2 = Q2($2~, and is 
shown in this format in Figure 7 in comparison with the 
Benoit equation 22. In the latter case, we used the 
expression (S2>ph = (NlE/6)(3f- 2)/f 2 for consistency 
(see equation (20), with 00x = l, 002 = 0) to define the 
variable # (see also equation (31a)). At sufficiently small 
Q, developing in series equation (13), we get the familiar 
result: 

1/S(Q) ~_ 1 + Q2($2)/3 = 1 + / t 2 / 3  (32) 

(Obviously enough, equation (32) is also given by 
equation (31) for u ~ 0, taking into account equation 
(20).) The usefulness of the latter equation is evident in 
that it is independent of the specific model chosen and 
of the number of arms f ,  unlike the peak position in the 
previous plot (see Figure 7). Our numerical results for 
1/S(Q) versus #2 are shown in Figure 8 in comparison 
with the Benoit result. Note that S(Q) is bound to be 
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Figure 7 The structure factor S(Q) plotted as #2S(Q) versus/~2, where 
#2= Q2<$2 > and Q = 4~ sin(0/2)/2 is the modulus of the scattering 
vector. Full curves: numerical results. Broken curves: Benoit equation 22 
for the phantom chain. The values of f are shown on the curves 
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Figure 8 The reciprocal of the scattered intensity plotted as a function 
o f / . / 2  Q2<$2 ) (see Figure 7). Full curves: numerical results. Broken 
curves: Benoit equation 22 for the phantom chain. The limiting slope 
of 1/3 is also shown. For the linear chain ( f  = 2) the present results 
coincide with those of the phantom chain 

smaller in the presence of the screened interactions than 
for the phantom-chain model, and that this effect shows 
up also when the structure factor is plotted as a function 
of Q 2 ( $ 2 ~ ,  due to the non-affine expansion (e.g. see 
Figure 2). 
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Figure 9 The experimental7 and calculated structure factor for 12-arm 
polystyrene plotted as It2S(Q) versus It (see Figure 7). The molecular 
weights, concentrations and mean-square radii of gyration of the two 
samples 7 are: (x) Mw=55000, c=2.49x10-2gcm -3, ($2)0 = 
1.33 x 103•2; and (O) Mw=467000, c=2.35 × 10 -3 gem -3, 
($2)o = 1.20 x 104 A 2. The solvent was cyclohexane-d12 at T = 35°C 
(a O-solvent) and the results are from neutron scattering measurements 
(from figures 2 and 4 of ref. 7). Full curve: present numerical results. 
Broken curve: Benoit equation 22 for the phantom chain 

From these considerations, it emerges that the peak 
position and height in the plot of/~2S(Q) versus # is 
model-dependent, so that a fit to the Benoit equation 
carried out only in this region 9 is somewhat doubtful, 
yielding at most approximate values for the radius of 
gyrationT; the situation would be even worse in a good 
solvent. Therefore, as suggested by Burchard 5'6, the best 
procedure to get (S 2) is to use the small-angle scattering 
by plotting 1/S(Q) versus Q2 and employing equation 
(32), even though the branched chains show an upward 
curvature which restricts the range of linearity (see Figure 
8). Furthermore, this curvature is larger the higher is the 
degree of branching, and is enhanced by any expansion 
of the chain. 

In Figure 9 we report the calculated and experimental 
scattering curves for 12-arm regular star polystyrenes 
plotted a s  bt2S(Q) versus/~ from ref. 7. The observed peak 
is indeed narrower than expected for the phantom chain 
(broken curve), in agreement with our predictions, 
particularly for the largest-molecular-weight sample (full 
circles). It should be stressed that the observed narrowing 
is due to the increased uniformity of the polymer density 
with respect to that of the phantom chain: in turn, this 
is related to the large fluctuations of the branch point 
around the centre of mass, producing the umbrella-like 
shape of the star polymer shown in the lower part of 
Figure 6. This experimental result is at variance with 
what is found for molten star polyethylenes with 
3 ~<f ~< 18, where no discrepancy was found 9 with the 
Benoit equation for the phantom chain 22. This may be 
easily explained by considering that polyethylene is much 
'thinner' than polystyrene 12, so that the screened- 
interactions effect would be much smaller and our result 
would essentially coincide with Benoit's. On the other 
hand,the experimental peak widths in Figure 9 show some 
molecular-weight dependence, being narrower for the' 
star polymer comprising only about 90 skeletal atoms 
per arm 7 (crosses), unlike our results. However, it should 

et al. 

be pointed out that correlation between rotational states 
does eventually show up when short chain sequences are 
probed, a feature neglected for simplicity in the present 
work. This local stereochemical effect is responsible for 
the increase in scattering at larger # (see Figure 9) and 
for the residual molecular-weight dependence of the peak 
width. (Correlation in rotational states, coupled with the 
screened-interactions effect, was effectively mimicked by 
Burchard through RIS (rotational isomeric states) 
simulations with enhanced chain stiffness 6'7 or using a 
worm-like chain 23 to reproduce his experimental results.) 
The molecular-weight dependence of the peak width 
would vanish with increasing arm length, so that the 
results from the larger-molecular-weight sample (full 
circles) in Figure 9 should show the asymptotic effect of 
the screened interactions. 

CONCLUDING REMARKS 

The 19 expansion due to the screened interactions arising 
from the intrinsic chain thickness was considered in the 
present paper for regular star polymers. The correspond- 
ing medium-range potential has a longer range than the 
correlations among the skeletal rotations, but not long 
enough to alter the proportionality between the mean- 
square radius of gyration ($2)o and the molecular 
weight. As a result, the chain expansion is asymptotically 
finite. The expansion depends on the star functionality, 
which determines the number of repulsive interactions 
between topologically close atoms. Using a realistic value 
for the single parameter of the screened interactions 12, 
the resulting g ratio, i.e. the ratio between the mean- 
square radius of gyration of a star polymer and that of 
a linear polymer with the same molecular weight (see 
equation (25a)), is very close to that predicted for 
a phantom chain. However, this agreement is somewhat 
fortuitous, arising from two approximations implicit in 
the phantom-chain model which cancel each other to a 
large extent: the phantom-chain model neglects the arms' 
expansion due to the intrinsic chain thickness, and 
assumes the arm directions to be uncorrelated, on 
average, thus underestimating the fluctuations of the 
branch point. These two effects are embodied respectively 
in the mean-square distance of the beads from the branch 
point, (X2~o, and in the mean-square distance of the 
latter from the centre of m a s s ,  ( Z 2 ) o ,  while ( S 2 ) o  is 
given by their difference (see equation (14)). Defining 
O~ 2 ~-(X2)o/(X2)p h and ~2 = (Z2)o/(Z2)ph, the latter 
ratio increases with f much more than the former one 
(see Figure 5). As a consequence, the average angle 
between the arm directions shrinks and the star polymer 
tends towards an umbrella-like shape (Figure 6), which 
becomes more pronounced with increasing f .  

The agreement of the present results with the (relatively 
few) experimental data available is essentially satisfactory 
for lightly branched chains with up to 6-8 arms, but 
becomes poorer for more heavily branched chains, where 
the inter-arm correlation across the branch point be- 
comes a relevant factor. In particular, the g ratio was 
found to be smaller than predicted for the phantom chain 
for f = 3, but in keeping with our result, and slightly 
larger for f t> 4, the difference being within experimental 
error for f up to 6-8 and outside it for larger f .  Some 
residual molecular-weight dependence might still be 
present in the experimental data 5'6, so that possibly the 
asymptotic values have not been reached yet; however, 
Monte Carlo simulations do indeed yield somewhat 
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larger g values than we get, particularly for large f l s , 1 9 .  
In this context, we should also mention the theoretical 
results of Daoud and Cotton 24, who employed the blob 
model in a simple scaling approach. Since the local 
monomer concentration within a star changes strongly 
with the distance from the branch point, they assumed 
the blob size ~ to vary accordingly, in analogy with 
semidilute solutions. From the basic assumption that in 
any spherical shell of thickness ~ centred at the branch 
point one finds exactly f blobs, they got g o c f  -1/2 for 
the 19-state. This result relies essentially on the require- 
ment of a high monomer concentration within the star, 
so that it should apply at most for heavily branched 
polymers with f > 10, as discussed also in ref. 19. At 
present, anyway, the experimental results 4'5 for f = 12 
or 18 do not show conclusively the f-1/2 dependence of 
g (ref. 19). 

A stringent test of the present model is provided by 
the structure factor S(Q), where Q is the modulus of the 
scattering vector. Owing to the non-affine expansion of 
the chain (see Figure 2), which may be pictorially 
represented by the 'umbrella-like' shape in the lower part 
of Figure 6, we predict a sharper peak in the plot of 
/22S(Q) versus I~, where ].£2 = Q 2 ( $ 2 ) o  ' than given by the 
phantom-chain model. This is in good agreement with 
neutron scattering results from high-molecular-weight 
polystyrene 7, as shown in Figure 9. 

The experimental behaviour of the branched chains 
was recently interpreted as evidence for residual three- 
body interactions in the 19-state 19. However, this is in 
contrast with the prediction that at T = (9 the residual 
three-body interactions should make the mean-square 
end-to-end distance of a linear chain smaller than 
predicted by the phantom-chain model 19'25-2s. In fact, 
the unperturbed state is achieved by compensating, on 
average, the repulsive three-body interactions by attrac- 
tive two-body interactions. This requirement not only 
leads to a lowering of the 19 temperature 11,26,27, but also 
leaves an attractive unbalance at the end beads, since 
there are no outer beads giving rise to three-body 
repulsions to be compensated; hence, the contraction of 
the mean-square end-to-end distance if the screened 
interactions are ignored. This argument should basically 
hold also for star polymers, which have a larger share 
of three-body interactions than linear polymers: these 
interactions, beyond bringing about a further lowering 
of the (9 temperature 11, should make the mean-square 
arm length even smaller, the more so the larger f is. 
Actually, this was not found to be the case by Monte 
Carlo simulations of polymers on various lattices with 
an attractive potential to counter-balance the self- 
avoiding walk expansion 1s'19'29. The mean-square end- 
to-end distance of the linear chain turns out to be larger 
than expected for the phantom chain (though, of course, 
still proportional to the number of bonds), the expansion 
ratio being somewhat dependent on the lattice em- 
ployed is. Furthermore, as shown by the Monte Carlo 
simulations of Bruns 29, the above proportionality is 
asymptotically reached from below through a term going 
to zero like N-  1/2, N being the number of skeletal bonds. 
Both these features are in keeping with the screened- 
interactions result 12'2s (see also equations (19) and 
(A.5)). Also, the increase with f of the expansion of the 
mean-square arm length (see Figure 2 and equations (19) 
with i = 1, j = N / f  + 1) is in agreement with Monte Carlo 
simulations is. 

In conclusion, we suggest that the residual three-body 
effects have only a minor influence in determining the 
unperturbed conformation of both linear and star 
polymers at their true 19 temperature 11, whereas a much 
more relevant role is played by the medium-range 
screened interactions accounting for the finite chain 
thickness 10,12,2 8. 
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APPENDIX 
We shall briefly derive here the perturbative expres- 

sions for &2(q) reported in equations (16). Let us start 
with ~2(q) = 1, therefore with (r2(i, J))ph = 121 i - Jl (see 
equation (7)). Replacing this expression in equations (9) 
and taking into account equation (10), we perform the 
substitution k = j - i, since we chose j > i, and then carry 
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out the sum over the remaining index, i say. The result is: 

1 
- 1  ~2(q) 

, , [  ~ sin s (qk/2) ,, f .  N q) 

/ 

s 
+ ~ k7/2 S a k ,--  q (A.1) 

k = N / f + l  f '  
where: 

3 m ~ sin2(q/2) k=~ k7/2 $1 

$1 = (k, N/f, q) = ~ sin 2 q(i + 
i=1 

= -  + l - k  
2 

sin(qk) + ( -  1)", sin[q(k - 1)]'~ 

~ 2 sin q : 
(A.la) 

S2(k, N/f, q) = ~ sin 2 q i + 
i = N / f + 2 - k  2 

sm q 

f( ; ) ]  S3(k,N/f,q)= ~ sin 2 q i + k  1 
i=1 

= 2 Nf + I - k -~ si--~q ) (A.lc) 

Let us now consider the collective modes of a star 
polymer with N/ f  >> l, that is, with very long arms. Since 
the q values of interest are q << 1, using s in(q/2)-  q/2, 
the leading term in equation (A.1) isl2: 

1 1 5 K f- G(q)q 1/2 (a.2) 

where, treating k as a continuous variable, we have put: 

3mtp  & ~ f 2 

+ 6:- 1) 
.Jr k 1:2 2 .JN/: 

5 K f 5 K f ( f ) - l / 2  - S(f ,  nq) (A.3) 
q~ 

--_1 
3 (k-) 1/2 q~ 3 

and 

J'(1 - 2-1/2)f _ 2 + 2-1/2 nq even 
S(f, rlq) (A.3a) 

(2 - 2-1/2)f 4 + 2-1/2 nq odd 

Furthermore, we defined: 

G(q) = 2 -3/2 fqN/2f X 2 sin 2 
- x 7/2 x dx (A.4) 

/ 

dO 

which changes slightly with the upper limit of integration 
qN/2f = nnq/4 only for the smallest n~ values since the 
largest contribution to the integral comes from x close 
to 1. Therefore, neglecting the very first few modes, we 
may set the upper limit to infinity, thus getting a constant 
value for G, as done in equation (17). 

Note that for the linear chain ( f =  2), S(2, nq)= 
-2-1/2 ,  from equation (A.3a), and ~o = 1, from equation 
(8a), for both even and odd modes, so that: 

1 10 K 10 
- -  " . ,  1 ~ KN-  1/2 (A.5) 
~2(0) 3 (k-) ~/2 3 

NOTE ADDED IN PROOF 

In Figure 7 the continuous line reported for f =  2 should 
coincide with the dashed line in the limit N/f--, 0o. 
Actually, our numerical results are slightly different 
because they were obtained for a discrete, finite chain. 
For f > 2 all the results are essentially exact in the same 
limit. 
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